
Class 3
What is a function?

•  Functions are like the buttons on a

calculator.

•  What are some of the functions of

 a calculator?

•  The actual code that the function

executes is in its own separate spot—
then, you call it by name (kind of like
a button!) in your program when you
want to use it.

#include <iostream>!
using namespace std;!
!
//function declaration (prototype)!
void printHello();!
!
int main(int argc, const char * argv[])!
{!

!//function call!
 printHello();!
!
 return 0;!
}!
!
//function definition!
void printHello(){ //ßfunction header!
 //function body!
 cout << "Hi there Nina!";!
 return;!
}!

	

•  This small program
demonstrates a simple
function called printHello().

•  Good function are simple,

concise and have clear
names.

•  When the function is called

in main, the program
jumps to the code within
the function body below
and runs it.

•  Once the function is done
running, the program
jumps back to main and
continues.

Hi there Nina!

Functions are a form of abstraction.

Abstraction means that you don’t need to understand how
everything works “under the hood” in order to interact with a

system.

#include <iostream>!
using namespace std;!
!
//function declaration (prototype)!
void printHello();!
!
int main(int argc, const char * argv[])!
{ !
 //function call!
 printHello();!
!
 return 0;!
}!
!
//function definition!
void printHello(){ //ßfunction header!
 //function body!
 cout << "Hi there Nina!";!
 return;!
}!

Building a function:
1.  Declare your function outside of any

other functions or brackets using a
prototype*.

*It’s actually optional, but definitely recommended.
•  Syntax:

 returnType functionName(parameters);

2.  Define your function.
•  What does your function do?
 Syntax:

returnTypefunctionName(parameterType

 parameterName){
 Block of code to execute.
 return;
 }

1.  Where do you want to use your function?
•  I want this greeting to print when I run my

program, so I call printHello() in main.

Hi there Nina!

•  When do you think functions will be
useful to you?

•  Can you think of any functions you

might want to write?

•  What is the simplest way you can think
of to describe what functions do?

Why should I use functions? Are they versatile?
Functions are just like verbs!

Functions are amazing!
1.  They boil down complex instructions into one function call,

 like a button.

•  This is great when you need to do one task many times.

1.  You can feed them data to work with by using parameters and
 arguments.

•  You have seen this with length(string), which counts the

 number of characters in the string you specify between
 the parenthesis.

1.  They can spit data back out at you by using return statements.

•  length(string) returns the number of characters in a string.

#include <iostream>!
using namespace std;!
!
//function declaration (prototype)!
void printName(string); !
!
int main(int argc, const char * argv[])!
{!
 string nameInput;!
!
 cout << "Enter your name:\n";!
 cin >> nameInput;!
 !
 //function call!
 printName(nameInput);!
!
 return 0;!
}!
!
//function definition!
void printName(string n){ //function header!
 //function body!
 cout << "Hi there " + n + "!\n";!
 return;!
}!

	

•  Func&ons	
 are	
 able	
 to	
 use	
 values	
 from	

the	
 outside	
 by	
 defining	
 parameters	

(highlighted).	

	

•  Parameters	
 live	
 in	
 the	
 parenthesis	

following	
 a	
 func&on’s	
 name.	

	

•  You	
 pass	
 arguments	
 to	
 func&ons	

according	
 to	
 the	
 parameter’s	
 data	

type.	

•  The	
 func&on	
 makes	
 a	
 copy	
 of	
 the	

value	
 you	
 pass	
 to	
 it	
 in	
 order	
 to	
 use	
 it.	

Parameters

Enter your name:
Emmett
Hi there Emmett!

#include <iostream>!
using namespace std;!
!
//function declaration (prototype)!
void printName(string); !
!
int main(int argc, const char * argv[])!
{!
 string nameInput;!
!
 cout << "Enter your name:\n";!
 cin >> nameInput;!
 !
 //function call!
 printName(nameInput);!
!
 return 0;!
}!
!
//function definition!
void printName(string n){ //function header!
 //function body!
 cout << "Hi there " + n + "!\n";!
 return;!
}!

	

•  printName() has a string
parameter.

•  printName() accepts nameInput

because it is a string, which
matches the parameter type.

•  nameInput is an argument

passed by value into printName()
as n.

•  To pass by value means that

nameInput was copied and
assigned to n.

Parameters

Enter your name:
Emmett
Hi there Emmett!

Newspaper content is passed to a printer, just like a function parameter!

So…what happens to all of those parameter variables
that were passed by value?

I hope you didn’t get too attached to that string n we

passed to printName(), because…

What lives in a function, dies in a function.

Don’t	
 worry—those	
 variables	
 aren’t	
 just	
 lying	
 all	
 over	
 the	

place.	

	

When	
 a	
 func&on	
 ends,	
 all	
 of	
 the	
 variables	
 declared	
 within	

it	
 are	
 cleared	
 from	
 memory.	

	

	

#include <iostream>!
using namespace std;!
!
//function declaration (prototype)!
int playerStrength(int);!
!
int main(int argc, const char * argv[])!
{!
 int age;!
 !
 cout << "How old are you?\n";!
 cin >> age;!
 !
 cout << "\nWow, you can carry\n";!
 //function call!
 cout << playerStrength(age) << " items!\n";!
 !
 return 0;!
}!
!
//function definition!
int playerStrength(int n){!
 n *= 5;!
 return n; //return value!
}!

Return Values •  The return statement allows a
function to send data back
when it is called.

•  You need to specify your return
type before the function name
in both the prototype and
function header.

•  Of course, the actual return
value’s data type must also
match.

•  playerStrength() returns an int
value.

•  It takes the player’s age input,
multiplies it by 5 and returns
the new value.

How old are you?
69
Wow, you can carry
345 items!

Return Values Two important notes about
return values:

1.  The return statement is a stop
sign for the function.

2.  You don’t have to return any

data, but you do need to have a
return statement.

3.  To stop a function without a
return type, you just use:
return;

4.  This is the old printHello()
example, which is a function
that returns “void,” aka, no
values.

#include <iostream>!
using namespace std;!
!
//function declaration (prototype)!
void printHello();!
!
int main(int argc, const char * argv[])!
{!

!//function call!
 printHello();!
!
 return 0;!
}!
!
//function definition!
void printHello(){ //ßfunction header!
 //function body!
 cout << "Hi there Nina!";!
 return;!
}!

	

Hi there Nina!

Does anyone want to write a function that
will add two numbers together and return
the sum?

1.  Prompt user to enter one number.
2.  Prompt user to enter a second number.
3.  Output the sum of the two numbers by

passing those two values into a function.

Hint: The return type will be an int!

So what’s all this fuss about parameters and return
values—why can’t my program just see ALL of my code?

Well… do you remember abstraction? You don’t need to know what makes a
laptop tick, because you can interact with it via UI, a keyboard, a screen, etc.

“Abstraction saves you from worrying about the details,
while encapsulation hides the details from you” (p160).

	

•  Encapsulation dictates that data is only visible within the scope (aka any set

of curly brackets) that it lives in.

•  Think about encapsulation in terms of bundling—each object is a separate

bundle of instructions that are wrapped up and hidden from the user.

•  Functions need return values and parameters so that the user can interact
with a program without having to worry about each line of code required to
execute a task.

Scopes	

	

•  Scopes	
 control	
 visibility	
 within	
 your	

program—they’re	
 the	
 locked	
 doors	

through	
 which	
 only	
 parameters,	
 return	

values	
 and	
 global	
 variables	
 can	
 move.	

•  Local	
 Variables:	
 Defined	
 within	
 a	
 scope	

and	
 only	
 visible	
 to	
 that	
 scope.	

	

•  Global	
 Variables:	
 Defined	
 outside	
 of	
 all	

scopes,	
 and	
 thus	
 visible	
 to	
 all	
 scopes.	

•  Scopes	
 can	
 also	
 be	
 nested:	
 if	
 a	
 func&on	

asks	
 for	
 a	
 variable	
 and	
 it	
 can’t	
 be	
 found	

within	
 the	
 func&ons	
 scope,	
 that	

func&on	
 will	
 travel	
 up	
 through	
 its	
 parent	

scopes	
 un&l	
 it	
 finds	
 the	
 variable.	

I live in main
I'm everywhere
I live in my_scope
I'm everywhere

#include <iostream>
using namespace std;

void my_scope();

// visible everywhere
string glob = "I'm everywhere";

int main(){
 string greeting = "I live in main";
 cout << greeting << endl;
 cout << glob << endl;

 my_scope();

 return 0;
}

void my_scope(){
 // same name, different variable
 string greeting = "I live in my_scope";
 cout << greeting << endl;
 cout << glob << endl;
}

You might be wondering,
what about those functions that seem to take multiple

types?

Like to_string()?

to_string() takes ints, floats and even doubles!

But how…

You can by overloading
functions!

You overload a function by:

•  Defining and declaring

multiple functions of the
same name.

•  The catch is that each time,

you use a different set of
parameters.

•  When you call the function,
your program checks the
arguments passed in against
the sets of parameters in
order to determine which
function to use. This is what
makes overloading functions
possible.

int score(int);!
int score(int, int);!
!
int main()!
{!
 score(3);!
 score(3,5);!
 !
 return 0;!
}!
!
int score(int n){!
 cout << "int function\n";!
 return 0;!
}!
!
int score(int f, int i){!
 cout << ”int function, 2 parameters\n";!
 return 0;!
}!

Overloading Functions
•  score() is defined

and declared twice,
but with different
different
parameters.

•  Note that return
value can be the
same, or different.

•  Only the parameters
need to be different.

	

int function!
int function, 2 parameters!

	

It sounds like functions can do it all, right? But at what cost?

You might not be thinking much about memory yet, but once you start
making functions that transform 3D objects, you’ll be cutting every

corner to make your program runs as fast as possible.

Inlining Functions
•  When you call an inlined function, it doesn’t actually do the normal

function call.

•  The program makes a copy of the function in place of the call instead of
jumping to the original function body.

•  They’re most useful for reducing overhead when calling tiny functions,
such as functions that return a value using only a few lines of code.

int main()!
{!
 Hello();!
 return 0;!
}!
!
inline void Hello(){!
 cout << ”Hello!\n";!

!return;!
} !

Hello!!

What if I want to make a function
that can change a variable outside of its scope?

#include <iostream>!
using namespace std;!
!
void multiplyReference(int&);!
!
int main()!
{!
 //define and declare the variable j!
 //and the reference i to the variable j!
 int j = 1;!
 int& i = j;!
!
 //print what i references (j)!
 //pass that reference into the function!
 //and print the output (what i references

! ! ! ! ! ! ! !times 10)!
 cout << i << "\n";!
 multiplyReference(i);!
 cout << i << "\n";!
!
 return 0;!
}!
!
void multiplyReference(int& i){!
 i *= 10;!
}!

References
•  A reference basically acts

as a nickname for
another variable.

•  In this program, i is a
reference to j. Anything
done to i also happens to
j.

•  In other words, both a
reference and its
assigned variable access
the same spot in
memory.

•  A reference does not
actually hold any value, it
can only refer to another
variable.

1!
10!

#include <iostream>!
using namespace std;!
!
void multiplyReference(int&);!
!
int main()!
{!
 //define and declare the variable j!
 //and the reference i to the variable j!
 int j = 1;!
 int& i = j;!
!
 //print what i references (j)!
 //pass that reference into the function!
 //and print the output (what i references

! ! ! ! ! ! ! !times 10)!
 cout << i << "\n";!
 multiplyReference(i);!
 cout << i << "\n";!
!
 return 0;!
}!
!
void multiplyReference(int& i){!
 i *= 10;!
}!

References
•  You CANNOT assign literal

values to references. A
reference can only be
instantiated to an existing
variable.

•  When declaring, you must
assign a variable
immediately or it won’t
compile.

•  Reference syntax:
typeName& variableName =variable

•  Pass by Reference: Using a

reference to change a value
from within a function.

	

1!
10!

#include <iostream>!
using namespace std;!
!
int multiplyReference(const int&);!
!
int main()!
{!
 //define and declare the variable j!
 //and the const reference i to the variable j!
 int j = 1;!
 const int& i = j;!
!
 //print what i references (j)!
 //pass that reference into the function!
 //and print the output (what i references

! ! ! ! ! ! ! !times 10)!
 cout << i << endl;!

!cout << multiplyReference(i) << endl;!
!
 return 0;!
}!
!
int multiplyReference(const int& i){!

!return i * 10;!
}!

Const References
•  Sometimes, you want to

pass by reference to
avoid making copies of
huge objects, but you
don’t want the object to
be altered.

•  Remember constants?
You can use a const
reference.

•  When you pass a const
reference to a function,
that reference is
protected and
unalterable.

1!
10!

Side Note: main(int argc, char *argv[])....??

•  main looks like a function, but what are these two parameters? In
other words, who's calling main?

•  The parameterss hold data that can be passed in at the start of
execution (when you hit Run in Xcode)

•  argc: argument count
•  argv: argument values
•  Most commonly used when running code outside of

 Xcode (by using... the terminal D:)
•  Example of providing arguments to main() via terminal:
•  You can specify these arguments (“command line arguments”) in an

Xcode menu
 ./a.out coding_is_fun //you type this into terminal!

!
Then, this stuff happens under the hood:!
argc = 2 // counts # of strings in argv array!
{“./a.out”, “coding_is_fun”} //contents of argv!

	

Homework
•  Write a small two-player text game where the first player enters a list of 5

things or people they love most, and the second player tries to guess what
those things are.

•  Function 1: Greets the players and prints a description of how to play.

•  Function 2: Prompts user input for 5 different things or people, then

receives that input and saves it in an array (or vector, if you want the player
to choose how many things they enter). *try figuring out how to hide the
player’s input in your console, or just print a bunch of spaces to hide it! J

•  Function 3: Prompt player to guess! Pass that array or vector as a reference

to a function that will check through the list for matches each time the
second player guesses.

This is a basic outline of an exercise in functions and references, but feel free to
be as creative with the gameplay as you want!

