
Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Phaser, Part II
Understanding more about Phaser

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Today we’ll learn about:
● How to use game states
● Animating objects
● Adding interactivity to your game
● Using variables to store important information

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Game States

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Game States
Most games have at least 2 states.

Main menu Gameplay

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Game States
In JavaScript, we can separate each game state into
its own file. This makes our code easier to manage.

MainMenu.js GamePlay.js

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Game States
In some games, you might want to separate the win
and lose states from gameplay.

MainMenu.js GamePlay.js WinState.js LoseState.js

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Creating a Game State
To create a main menu state, add it to the state list.
This should be done near your game instance code
so it applies globally.

var game = new Phaser.Game(GAME_WIDTH, GAME_HEIGHT, Phaser.AUTO);

//state is added below the game instantiation

game.state.add('MainMenu', myGame.MainMenu);

State name JavaScript object
to reference

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Starting your game with a state
Command your game to begin with a certain state
using the state.start() function.

game.state.start('MainMenu');

State name

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Switching game states
You can also
start another
game state after
the game begins.

myGame.mainMenu = function(game) {}

myGame.mainMenu.prototype = {

preload: function() {

/* stuff goes here */

},

create: function() {

this.state.start('GamePlay');

}

}

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Loading images

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

The preload() function
Phaser needs to know what images to prepare
before the game can be displayed.

preload: function() {

//commands go here

}

function preload() {

//commands go here

}

in a game without states:in a game with states:

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Loading Images
There are several types of images in Phaser:

● image - static, no animation
● spritesheet - sprite with animation
● tilemap - environment objects

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Locating image files
All files should be referenced from the root, the
main folder where your project is located.

'img/background.png'

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Static images
To load a static image, tell your game object to load
an image. Within the parentheses, name the image
so it can be referenced later, then tell Phaser where
to find it in your folder.

this.load.image('background', 'img/background.png');

Name of image Location of image file

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Why do we use this instead of game?
Loading and adding images should always be done
in relation to the game object, which is referred to
in myGame’s GamePlay state function.

var myGame = {

 GamePlay: function(game) {}

};

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Why do we use this instead of myGame?
JavaScript’s this allows you to create, reference,
and modify an object’s properties within the scope
of a function. In this case, that object is game.

var myGame = {

 GamePlay: function(game) {}

};

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Why do we use this instead of myGame?
In games without
multiple states,
you can reference
the game object
directly.

var game = new Phaser.Game(640, 960, Phaser.AUTO,
''{
 preload: preload,
 create: create,
 update: update
});

function preload() {
 game.load.image('sky', img/background.png');
}

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Loading sprites
Sprites require widths and heights since they might
have multiple animation frames. The last two
numbers are the sprite’s width and height.

game.load.spritesheet('player', 'img/player.png', 32, 64);

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Using images

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

The create() function
Once the preload function is complete, Phaser
needs you determine how the game will start.

create: function() {

//commands go here

}

function create() {

//commands go here

}

in a game without states:in a game with states:

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

The create() function
The create() function lets you set up variables,
objects, and the look of your game.

function create() {

myGame.score = 0;

}

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Drawing objects
You can draw, or place, objects onscreen using
Phaser’s add.sprite() function.

game.add.sprite(0, 0, 'background');

X, Y Name of image
to use

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Drawing objects
For important things like your player character, you
can define a global variable that can be referenced
throughout the game’s functions.

myGame.player = game.add.sprite(30, 60, 'player');

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Placing objects in dynamic locations
Want to reference a location that might change?
Use variables or JavaScript’s Math functions.

GAME_WIDTH: 640;

GAME_HEIGHT: 960;

game.add.sprite(GAME_WIDTH,
GAME_HEIGHT, 'player');

Using Math:Using variables:

game.add.sprite(100, Math.floor
(Math.random() * 640) , 'player');

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Referencing an object’s dimensions
You can also reference the dimensions of your
object when placing it in your game.

game.add.sprite(24, this.height - 64, 'player');

'this' refers to
the sprite object

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Animating objects
Animate an object by adding to its animations list.

myGame.character.animations.add('walk');

Animation
name

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Animating objects
You can choose animation frames using brackets.

myGame.character.animations.add('walk', [0, 1, 2]);

0 1 2

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Animating objects
To trigger an animation, use the play command.

myGame.character.animations.play('walk',30,false);

Animation
name

Framerate

Loop
animation?

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Physics and collision

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Physics
Phaser has a set of systems called Physics that
allow you to check when objects touch. You must
enable physics for each object that will be checked.

game.physics.enable(object, Phaser.Physics.ARCADE);

Object
name

Type of physics – must be in CAPS

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Physics
Phaser has 3 types of physics.

● Arcade: Phaser.Physics.ARCADE
● Ninja: Phaser.Physics.NINJA
● P2: Phaser.Physics.P2JS

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Arcade Physics
Treats all objects as rectangles. Quickest to load
because it only has one type of shape.

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Ninja Physics
Allows for slopes and rotation. This means you can
create curved shapes and ellipses.

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

P2 Physics
You can make a full-fledged physics game with
polygons, angles, and swinging like Angry Birds.

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Using gravity in your game
Want your game to have gravity? Enable a physics
system for your entire game in the create()
function. You can have horizontal & vertical gravity.

game.physics.startSystem(Phaser.Physics.ARCADE);

game.physics.arcade.gravity.y = 250;

Physics type
(lowercase)

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Body settings
All objects with enabled physics have a body, which
allows you to modify physics-related properties.

To add bodies to objects without physics enabled:

game.physics.arcade.enableBody(myGame.object);

Object to enable
physics on

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Body settings
Want to move an object? Use the body.velocity.x
or y property. In Phaser, the velocity defines
movement in pixels per second.

myGame.player.body.velocity.x = 150;

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Body settings
Want an object to ignore being hit by another
object? Use the body.immovable setting. This is
good for things like floors, blocks, and walls.

myGame.player.body.immovable = true;

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Body settings
To stop objects from moving off screen, use the
body.collideWorldBounds setting.

myGame.player.body.collideWorldBounds = true;

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Adding interactivity

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Updating the Game
Unlike preload and create, which only run once
each, the update() function runs every frame.

in a game with states: in a game without states:

update: function() {

//commands go here

}

function update() {

//commands go here

}

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Updating the Game
update() is where your player is told to move, the
score is updated, and text changes.

function update() {

myGame.score += 1;

}

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Adding interactivity
You can add interactivity to your game using a
variety of input types:

● Keyboard
● Mouse
● Touch
● Gamepad

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Keyboard input
The keyboard input object allows you to create
interactivity using keys. Enable the keys you want
to use in the create() function using addKey().

var pauseKey = game.input.keyboard.addKey(Phaser.Keyboard.P);

Key to add from Phaser’s
list of keys

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Keyboard input
You can use the onDown event listener to trigger a
function when a button is pressed.

pauseKey.onDown.add(pauseGame, this);

Function Object to
reference
in function

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Keyboard input
This code creates a
global object that
contains arrow keys:

● up
● right
● down
● left

isDown checks if a key
is down and returns a
boolean value.

var cursors;

function create() {
cursors = game.input.keyboard.

createCursorKeys();
}

function update() {
if (cursors.left.isDown) {

 player.body.velocity.x -= 150;
 player.animations.play('left');

 }
}

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Mouse/touch input
Phaser checks if mouse or touch interactivity is
available when this.input is used.

game.input.onDown.add(startGame, this);

Function Object to
reference
in function

(game)

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Mouse/touch location
You can reference the location of the mouse or
touch event using input.x and input.y.

myGame.player.x = game.input.x;

myGame.player.y = game.input.y;

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Gamepad input
Browser-based gamepad input is currently in the
infancy stage. At the moment, Phaser supports
Xbox 360 gamepad input in Chrome.

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Gamepad input
Phaser supports up to 4 gamepads. You can
reference each using the input.gamepad object.

pad1 pad2 pad3 pad4

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Gamepad input
This code creates the
pad1 object & checks if
its left d-pad button
on is down.

When the left button
is down, player moves
to the left.

var pad1;

function create() {
pad1 = game.input.gamepad.pad1;

}

function update() {
if(pad1.isDown(Phaser.Gamepad.
XBOX360_DPAD_LEFT)){

player.x--;
}

}

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Functions & Collision

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Checking collision
Using Phaser’s physics, you can trigger a function
when two objects overlap:

game.physics.arcade.overlap(player, enemy, playerDies);

Object 1 Object 2 Function to runPhysics type
(lowercase)

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Global functions
Global functions, or functions
defined outside the scope of
all objects & functions, can be
called anywhere in your code.

When a global function is
called, JavaScript jumps to the
definition and runs that code.

GamePlay.js

Game object
● preload
● create

○ globalFunction();
● update

○ globalFunction();

globalFunction() definition
● do stuff;

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Global functions
This global function adds 1
to the score & destroys
the meat object when it is
touched by player.

The objects that collide
are passed through via the
function parameters.

var eatMeat = function(player, meat) {
 // If meat is hit, remove it!
 meat.kill();

 //increase score
 myGame.score += 1;

};

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Question
How would you make the following scenarios from
Super Mario Bros with functions and physics?

1. Jump 2. Touch enemy 3. Hit brick block 5. Touch flagpole4. Hit “?” box

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Groups

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Groups
Have an object you want to repeat onscreen and
give the same properties? Make a group.

myGame.myGroup = game.add.group();

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Using Groups
You can instantiate objects and add them to a
group in multiple ways.

Creating and adding a new object: Adding an existing object:

// Create an object, name it, and add to group

var item = myGame.myGroup.create(0, 0,
'item');

// Add an existing object to
a group

myGame.myGroup.add
(groupItem);

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Group Physics
Want to add a Physics body to all the objects in
your group? Use the enableBody property.

myGame.myGroup.enableBody = true;

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Collision with groups
You can trigger functions when an object collides
with a group. The function below is triggered when
player collides with an object in myGroup.

 game.physics.arcade.collide(player, myGroup,
hurtPlayer);

Group
name

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Question
● Why are groups useful in games?
● What kinds of purposes could you use groups for

in a game?

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Text

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Displaying text
To draw text on the screen, add it to the game. The
text should be instantiated in create().

myGame.scoreText = game.add.text(90, 24, '0');

X, Y Text
content

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Styling text
Style your text using the optional fourth parameter,
the style object, which can have many properties.

Inline: With a variable:

game.add.text(90, 24, '0', {

fill: "#ccc"

});

var fontStyle = {fill: "#ccc"};

game.add.text(90, 24, '0', fontStyle);

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Styling text
Types of styles you can add to your text:
● font: "bold 32px Arial" / "20pt Times New Roman"
● fill: "#000" / "#000000" / "red"
● align: "center" / "left" / "right"
● stroke: "#000" / "#000000" / "red"
● strokeThickness: 1
● wordWrap: true
● wordWrapWidth: 100

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Using variables with text
You can use variables in text by replacing (or adding
to) the third parameter.

myGame.scoreText = game.add.text(90, 24, myGame.score);

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Updating text
In the update() function, you can change text using
the setText() function.

With a string:

myGame.scoreText.setText("1"); myGame.scoreText.setText(myGame.score);

With a variable:

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Using variables with strings
JavaScript literally lets you add variables to strings.

myGame.scoreText.setText("Score: " + myGame.score);

string variable

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

To do:
Make a small interactive game in Phaser. Use the
things you learned in this lesson:
● States
● Art & animation
● Inputs
● Collision
● Groups
● Text

Lecture 6: JavaScript and Phaser II

The Code Liberation Foundation

Thanks! Questions?
@cattsmall

catt@codeliberation.org

