
WELCOME TO THE 4%

Code Liberation x Indiecade 2014
A trans-inclusive, women-only programming workshop

1

WHO ARE YOU?

2

WHO AM I?

3

c/o interstellarselfiestation.com

Jane Friedhoff
Creative Coder & Game Designer
janefriedhoff.com
@jfriedhoff

4

(among others!)

5

Why do we emphasize learning code?

6

7

Colors you want Colors the store has

8

Colors you want Colors the store has

9

HOW DO GOOD
CODERS GET GOOD?

What makes a good coder?

10

by being bad at it for a
very long time

11

Myth: only bad programmers have to
ask questions

12

13

14

15

16

17

18

19

20

21

22

23

24

25

What is Processing?

26

What is Processing?

• Processing is a library for Java (a programming
language)

• Library: a collection of code intended to simplify
coding process and/or give it more functionality

• We’ll be working in the Processing environment (the
app), which is also referred to as an IDE

27

So what’s an IDE?

• IDE = Integrated Development Environment

• Basically just an application to help you write code in
this language

28

IDE: Cooking Simile

• Let’s compare an IDE to the tools you need to create a
delicious meal for royalty

• So what would you need?

• A recipe (the instructions)

• A stove/oven/microwave (something to take the raw
materials and turn it into a meal)

• A taste-tester (to make sure you don’t accidentally
poison anyone)

29

IDE: Cooking Simile

• Cooking:

• A recipe

• A stove/oven

• A taste-tester

Coding:

• Written code

• A compiler

• A debugger

30

Button to compile code

Space to write code

,YYVY�UV[PÄJH[PVU�^PUKV^
Output

31

Taking Notes In Your Code

32

Commenting Code

33

34

Commenting Code, Again, ‘Cause Seriously

35

Printing To Console

36

Printing to the Console

37

Try using the println(); command to
print “Hello, world!”

38

Answer

39

Syntax Proper
Proper Syntax

40

Human Syntax

• End sentences with a punctuation mark

• Hi there.

• Where’s the coffee?

• Use opening and closing punctuation

• So I said, “You look amazing!”

41

Human Syntax

• Otherwise it would be very difficult to know where a
sentence begins and you might say this is wrong but
others could say maybe not it would also be difficult
to know where it ends all of this is important for our
comprehension of language and what it means
otherwise we might misconstrue the meaning of a
sentence you know people wouldn’t want to read
slides like this I say

42

Human Syntax

• Compare how grammar affects the following
sentences:

• “Jane said I looked nice.”

• Jane said, “I looked nice.”

43

Human vs Code Syntax

Humans:

• End sentences with a punctuation
mark

• Hi there.

• Where’s the coffee?

• Use opening and closing
punctuation

• So I said, “You look amazing!”

Code:

• Generally end commands with a
semicolon

• println(“Syntax matters!”);

• Use opening and closing
punctuation

• println(“Syntax matters!”);

44

Parameters

“Real Life”

rent_a_movie(“Top Gun”);

Rent me a movie--
specifically, Top Gun.

Code

println(“Hello”);

Print to the console--
specifically, print Hello.

• Parameters: information that affects how the computer
executes a command

45

Let’s Get Visual!

46

Basics of Visuals

• When you ran your sketch, you saw a little gray box
pop up

• When you draw things, they show up in this window

• Default size: 100px by 100px (but we can change this!)

47

Locations in Processing

48

• In real life, having named and/or numbered streets
and addresses helps us orient ourselves and figure out
how to get where we’re going

• Otherwise:

• We might end up in the wrong place

• Have no idea where to go, and just refuse to try

Locations In Processing

49

• Processing uses a grid system to know where to draw
stuff to the screen

• Like a piece of graph paper underneath your sketch
window

Coordinate Plane

50

As you go right, the x value gets
bigger.
As you go down, the y value gets
bigger.

Coordinate Plane

51

X=0 x=WIDTH
y=0

y=HEIGHT
52

X=0 x=WIDTH
y=0

y=HEIGHT

(3,2)

53

Drawing Stuff

54

ellipse(x position, y position, width, height);

rect(x position, y position, width, height);

triangle(x pos of 1st point, y pos of 1st point, x
pos of 2nd point, y pos of 2nd point, x pos of
3rd point, y pos of 3rd point);

Drawing Stuff

line(x pos of 1st point, y pos of 1st point, x
pos of second point, y pos of 2nd point);

point(x pos, y pos);

55

Real Life

rent_a_movie(“The Big Lebowski”,

TV_EDIT);

Rent me a movie--specifically, The Big

Lebowski, TV edited version.

Coding

ellipse(10, 20, 50, 60);

Draw me an ellipse at x-position 10

and y-position 20, with a width of 50

pixels and a height of 60 pixels.

Drawing Stuff

56

• Different parameters = very different output!

Parameters

57

Coloring Stuff

58

• RGB: Red, Green, Blue

• Additive color: the higher the values we give these
three colors, the closer we get to white

Color

59

• R, G, and B can have values from 0 (least) to 255
(most)

Color

60

½OO�����©���©����
HOOLSVH�[©SRVLWLRQ�©\©SRVLWLRQ�©ZLGWK�©KHLJKW��

QR6WURNH���
½OO�����©���©����
HOOLSVH�[©SRVLWLRQ�©\©SRVLWLRQ�©ZLGWK�©KHLJKW��

VWURNH�����©���©����
HOOLSVH�[©SRVLWLRQ�©\©SRVLWLRQ�©ZLGWK�©KHLJKW��

Fill and Stroke

61

background(155, 12, 200);

background(13, 167, 19);

background(255);

background(0);

background(100);

62

Coloring Stuff

63

Inherent Order

64

Humans Processing

We’ll talk about automatically

repeating these commands later.

Inherent Order

65

ÄSS�������������"
LSSPWZL����������������"

ÄSS�����������"
LSSPWZL����������������"

ÄSS�������������"
LSSPWZL����������������"

Inherent Order

• Functions execute from top to bottom

• If you use a drawing command higher up, it will be
drawn below any later drawn stuff

66

Try drawing some shapes! See how
the order in which you write your
commands affects how they’re

drawn.

67

Variables and Datatypes

68

• In this sketch, we draw a
bunch of shapes

• They each have an x-
value of 20

• What if we wanted to
move all the shapes over
by 5?

Why do we need variables?

69

• If we want to change the
x-value, we’d have to
change it three times

• It would be a lot easier if
we only had to change it
once

Why do we need variables?

70

• This is where variables
come in!

• Variable: a container for
a piece of information
that you can reference
throughout your code

• Especially useful for
data you might want to
change

Why do we need variables?

71

• Notice the word in
orange before the
variable name? That’s its
datatype

Why do we need variables?

72

• We don’t think about it much IRL, but we need
some context in order to store and process the
information we’re given

Datatypes

73

Name Use Code Real life

Integer Whole numbers int I have 1 dog.

Float
Numbers with a

decimal
float

I’m 25.1 years
old.

String Words or letters String
“Get off my

lawn!”

Character A single letter char ‘A’

Boolean True or false boolean
It’s true that I
want coffee.

Datatypes

74

• The number of kids you have

• Your name

• Your middle initial

• Your apartment number

• Whether you ate breakfast or not

• The street you live on

• The temperature outside

• Whether the lights are on or not

What datatype would you use to describe these things?
Choose: integer, float, string, boolean, char

75

• Variables are used to store pieces of information
that might change, and/or that are used multiple
times

• When you make a variable, you have to tell the
computer what kind of data that variable will hold

Summary

76

Datatype Name Value

What kind of thing are

we dealing with here?

Can we add it or

subtract it? Is it text? Or

is it a true or false

condition?

What are we calling this

thing? We need a way

to refer to it within our

code.

What actual information

is this variable

representing?

Syntax: datatype name = value;

Declaring and Initializing Variables

77

• Let’s say I’m making a visualization of how many
hours of code Code Liberation has taught

• Since we’re always teaching code, that number
could change--so I’d want to make a variable to
store it

Variables and Datatypes

int hours_of_code_taught = 143;

datatype variable name value

78

• Use underscores or alternating caps (camel case) to make things readable

• Good: user_age, player_speed

• Bad: timeelapsedsincethegamestarted

• Name your variable something that makes sense

• Good: player_health

• Bad: data, aksdljfl, my_var

• Variables cannot start with a number, but can contain numbers

• Good: player_1_health

• Bad: 1_player_health

Naming Conventions

79

Use a single-equals (=) to make the thing on the left equal the thing on
the right.

name initially equals “Jane”
We change name’s value to “Rebecca”

We print the value to see if it worked...

... and it did!

Changing Variable Values

80

Operator Code

Addition +

Subtraction -

Division /

Multiplication *

We’ll talk about another operator, modulo (%), soon.

Mathematical Operators

81

• Five plus 3

• Five minus 3

• Five times 3

• Five divided by three

• Five-point-zero divided by three-point-zero

Try using println and the math symbols to
print the result of the following equations.

82

• Notice something
weird?

• To a computer, 5/3 is
not the same as
5.0/3.0!

• It goes back to
datatypes--the
computer sees whole
numbers, so it spits
out a whole number--
even when that’s not
really correct

83

Try defining an integer variable called xPos, and make it
equal 5.

Define another integer variable called yPos, and make it
equal 7.

Draw a circle at xPos and yPos.
Draw another circle at xPos + 10 and yPos.
Draw another circle at xPos + 40 and yPos.

(They should have a width and height of 9.)

84

85

Loops

86

Humans Processing

... except when we

make it loop!

Loops

87

• Sections of code that are run multiple times, e.g.:

• Every second

• While a condition is true or false

• A set number of times

Loops

88

Basic Loop

Pen & Paper Animation:

• First step: get together
materials (pens, paper, paints,
etc.)

• Second step: draw a frame on
first piece of paper

• Third step: get a new piece of
paper and draw the next frame

• Repeat until finished

89

Basic Loop

Pen & Paper Animation:

• First step: get together
materials (pens, paper, paints,
etc.)

• Second step: draw a frame on
first piece of paper

• Third step: get a new piece of
paper and draw the next frame

• Repeat until finished

Processing:

• First step: Processing looks at
variables and their initial values

• Second step: Processing runs
through certain code from top
to bottom

• Third step: Processing goes
back up to the top of that code
and runs again

• Repeat until user closes
program

90

}
setup

draw

Processing:

• First step: Processing looks at
variables and their initial values

• Second step: Processing runs
through certain code from top
to bottom

• Third step: Processing goes
back up to the top of that code
and runs again

Basic Loop

91

Where you set

initial values.

Where you

write

instructions to

be repeatedly

executed.

Basic Sketch

92

}
Runs first thing--but just once.

Goes top to bottom, then
loops back up to top.

} Evidence: “Hello” is printed
once, then Processing prints
1, 2, 3, 4 over and over
again.

Basic Sketch

93

How would we arrange the following code so that Processing would add 1 to xPos every
frame, and draw the ellipse at that new position?

What would go in setup, and what would go in draw?

94

xPos begins at 5, so we put that in
setup.

Since we want to repeatedly add 1
to xPos, we put it in draw--that way,
that code is run every frame.

95

Resulting Questions

96

Why do we define xPos (“int xPos”)

outside of setup?

Why do we get those weird black lines?

97

Frame Systems

98

Basic Sketch

• Background function ‘paints’
over everything that was drawn
previously

• Allows you to create actual
animations/sense of motion

99

Scope

100

Child
Has weekly allowance

Parent
Has bank account

Can drive a car

Scope

In real life:

• Parents may have a bank
account and can drive cars

• Children may have
allowances

• Parents can affect the child’s
allowance, but the children
can’t affect the parent’s
bank account or driving
privileges

101

Scope

In programming (generally):

• Stuff inside a set of brackets
can:

• Create own variables

• Interact with variables
created outside brackets

• Stuff outside brackets can’t
affect variables created
inside brackets

Inside of
Brackets

Has variables

Outside of
Brackets

Has variables

102

Scope

103

Scope

xPos is defined within
setup’s brackets, meaning
nothing outside setup can

use it

xPos is defined outside of
setup and draw, so both of
them can access and affect

xPos

104

What parts of the code can access
myNumber? myFloat? myString?

105

Global variable

Local variable

Local variable

106

Special Variables

107

Name Use

mouseX
Current

x-position of the mouse

mouseY
Current y-position of the

mouse

pmouseX
X-position of the mouse one

frame ago

pmouseY
Y-position of the mouse one

frame ago

width
Width in pixels of the

window

height
Height in pixels of the

window

Special Variables

• There are certain
variables where
Processing keeps
track of the values for
us--we don’t have to
set them

(these are just a few!)

108

Can you write code so that Processing draws a
circle of width=10 and height=10 at the x and y

position of the mouse every frame?

Hint: the command for an ellipse is
ellipse(x-position, y-position, width, height);

109

If you wanted to get fancy, you could
add in a background() command to
draw(). Can you guess what that would
do?

110

Let’s Make A Simple Drawing
App!

111

In Processing, a line has two
properties:

• A starting point (x1, y1)

• An ending point (x2, y2)

Simple Drawing App

112

Simple Drawing App

In a wiggly line, the same idea holds. The
line joining each point is made up of:

• A starting point (x, y)

• An ending point (x, y)

The only difference: the ending point of
one part of the line becomes the starting
point for the next part of the line.

113

Say our mouse started at the bottom-left point
and is now at the upper-left point. Which

Processing variables would describe each point?

114

pmouseX, pmouseY

mouseX, mouseY

115

What would happen if, every frame, we
drew a line between where the mouse was
last frame, and where the mouse is now?

Can you write this code?

116

117

Conditionals

118

Conditionals

• A conditional statement is a piece of code that only
runs in certain cases/depending on certain conditions

• E.g.: you must be of a certain height to ride a
rollercoaster--if you’re less than that height, you can’t
ride it

119

Conditionals

If your height > the minimum height => you can ride

Otherwise, you won’t be able to ride it

120

Condition that needs to be met for

bracketed code to execute.

Resulting action if condition is met.

Open and closed brackets indicate to

computer what is actually part of the

conditional statement.

If-statement

If-Else Statement
Condition that needs to be met for

bracketed code to execute.

Resulting action if condition is met.

If the condition is not met...

The resulting action if the condition is

not met.

Conditionals

121

Operator Use Examples

Greater than (>) Checking to see if something is
larger than something else

if (myAge > 25) {
 canRentCar = true;
}

Less than (<) Checking to see if something is
smaller than something else

if (myAge < 25) {
 canRentCar = false;
}

Greater than or equal to
(>=)

Checking to see if something is
larger than or equal to

something else

if (myAge >= 21) {
 canEnterBar = true;
}

Less than or equal to (<=)
Checking to see if something is

smaller than or equal to
something else

if (myAge <= 20) {
 canEnterBar = false;
}

Comparators

122

Operator Use Examples

Double-equals (==)
Checking to see if
something equals
something else

if (age == 16) {
 sweet_sixteen = true;
}

Not-equals (!=) Seeing if something is not
the case.

if (happy != true) {
 mood = “bad”;
}

Comparators

123

Can you write the following
code?

If the mouse is less than halfway
across the sketch, make the

background red. Otherwise, make
the background blue.

124

If the mouse is less than halfway across the sketch, make the background red.
Otherwise, make the background blue.

Nothing needs to be in setup.

We want this test to be run every frame.

Default sketch size is 100, so 50 is the midpoint.

Resulting action goes inside brackets.

Otherwise...

A different action occurs.

125

Images & Fonts

126

Images and Fonts

• Remember our earlier datatypes? (int, float, etc.)

• There are two more fun datatypes:

• PImage (image)

• PFont (font)

127

Images and Fonts
• You can declare image and font variables using

these datatypes

• These datatypes also have functions--different
actions they can perform on themselves

• The ability to load an image.

• The ability to resize an image.

• The ability to draw that
image.

PfontPImage

• The ability to load a font.

• The ability to resize that font.

• The ability to write stuff in that
font.

128

Step Purpose Sample Code

Defining the image
Telling Processing to set

aside memory space to hold
an image

PImage p;

Loading the image

Telling Processing the
filename of this image so it

can find and load it into that
space

p = loadImage(“pic.png”);

Drawing the image

Telling Processing to draw
that image at a given

location, via the ‘image’
method

image(p, xPos, yPos);

Images and Fonts

129

Step Purpose Sample Code

Defining the font
Telling Processing to set aside
memory space to hold a font

PFont f;

Creating the font Picking a font and converting it
to a form Processing can use

N/A--see next slide

Loading the font
Telling Processing the filename of
this font so it can find and load it

into that space
f = loadFont(“Arial.vlw”);

Using the font
Telling Processing to make all

subsequent text this font at this
size

textFont(f, 32);

Writing stuff Actually writing things in that font text(“Whatever!”);

Images and Fonts

130

Loading Fonts

Choose font.

Choose size.

Filename for loadFont();

Saves font in data folder.

131

Images and Fonts

• Outside data, like images and fonts, are always
stored in the ‘data’ folder of that sketch

• If you don’t see one, just make it

132

Try downloading an image and drawing it in
a sketch (at whatever location you like).

Hint: put the file in your ‘data’ folder. Define it outside of setup()
and draw(), and load the image in setup().

(Do you know why we would load it in setup rather than draw()?)

133

134

Try creating a font and using it in a sketch.

Hint: to write text with a font, use this command at the end:
text(“text”, xPos, yPos);

135

136

To force a new line/return, use \n.

Escape Characters

137

Colors

Try coloring the text you just wrote by using a
fill() command.

138

139

Try the following exercises:

Write a sketch such that an image is drawn at the current location
of the mouse.

Write a sketch such that when the mouse is on the left-hand side of
the screen, text says ‘left’, and when it is on on the right-hand side

of the screen, text says ‘right.’

Hint: both require use of background() in draw to look right.

140

141

Image Mode

• By default, an image’s
x and y position are in
the upper-left-hand
corner

142

Image Mode

• You can use
imageMode(CENTER) to
move the x and y to the
center

143

Randomness

144

Randomness

• Useful for making things unpredictable!

• Takes either one or two parameters:

• random(5) returns a number from 0->just under 5

• random(3, 5) returns a number between 3->just
under 5

145

Try drawing an ellipse at a random x-position between
10 and 90, and a random y-position between 10 and

90.

Do this in setup(). Now try it in draw(). Why the difference?

146

147

How can I test for collisions?

148

Collision: when one point is less than a certain
distance from another point.

Distance

149

radius radius

Have these circles collided yet?

150

radius radius

How about now?

151

radius

• If the distance between the center-points of the circles is
less than or equal to the sum of their radii, they have
collided!

• Get distance with dist(x1, y1, x2, y2)

Distance

152

radius radius

• If the distance between the center-points of the circles is
less than or equal to the sum of their radii, they have
collided!

• Get distance with dist(x1, y1, x2, y2)

Distance

153

